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Abstract: This paper proposes a novel multispectral video acquisition method for dynamic
scenes by using the Spectral-Sweep camera. To fully utilize the redundancies of multispectral
videos in the spatial, temporal and spectral dimensions, we propose a Complex Optical Flow
(COF) method that could extract the spatial and spectral signal variations between adjacent
spectral-sweep frames. A complex L1-norm constrained optimization algorithm is proposed to
compute the COF maps, with which we recover the entire multispectral video by temporally
propagating the captured spectral-sweep frames under the guidance of reconstructed COF maps.
We demonstrate the promising accuracy of reconstructing full spatial and temporal sensor
resolution multispectral videos with our method both quantitatively and qualitatively. Compared
with state-of-the-art multispectral imagers, our computational multispectral imaging system
can significantly reduce the hardware complexities, while achieves comparable or even better
performance.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Multispectral images/videos are of great significance for many applications, such as surveillance
[1], medicine [2], material analysis [3], etc. Although multispectral imaging has been actively
investigated for decades, capturing multispectral videos of high spatial resolution remains a
challenging task. In terms of implementation, there are mainly 4 categories of methods, i.e.,
dispersion based methods [4–18], diffractive optical element (DOE) based methods [19–21],
multi-reflection based methods [22,23] and customized-filter based methods [24–36].
3D-volume dispersion [4], pixel-wise dispersion [5,6] and single dispersion [7,8,37] are

successively proposed to realize multispectral imaging in a snapshot way. Among these dispersion
based methods, the spatial resolution is low due to the trade-off for the spectral resolution. To
retrieve higher spatial information, coded aperture snapshot spectral imaging (CASSI) methods
[9,10] are proposed. Augmented with statistically learned spatial-spectral priors [11–14],
color-coding strategies [13,15], dual-coding design [16] or hybrid-system implementations
[17,18], CASSI are promising for higher spatial and spectral resolution. However, CASSI-
based multispectral imaging systems is not compact and requires sophisticated optical/geometry
calibrations.

Recently, DOE based methods [19–21] are proposed to encode the multispectral information
with spectrally-varying PSFs and realize snapshot multispectral imaging [19–21]. Among these
methods, scene images of different wavelength are encoded with varying PSFs and decoded
with optimization based on the calibrated PSFs of different wavelength. These kind of novel
multispectral methods could enable compact, snapshot multispectral imaging and video-taking,
while the reconstruction quality of these methods in both spatial and spectral domain are limited
by the diffraction efficiency of the diffractive optical elements.
Multi-reflectance based methods [22,23] emerged to realize snapshot multispectral imaging.

Through multi-reflectance optical system, the images of object is duplicated and located in
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different spatial positions. Introducing multispectral encoding during the multi-reflectance
process [23] or in the duplicated images [22] enables multispectral imaging. However, the
field-of-view is directly sacrificed to obtain multiple reflected images in a single image and the
spatial resolution is also limited.
Among all the above three main methods, the spatial information is either mixed with the

spectral information or directly sacrificed for the spectral information. Multispectral imaging
could also be realized through directly coding in the spectral domain with different color filters.
RGB images/videos are exploited to recover spectral information [24–28]. While these method
could turns the commercial RGB camera into a multispectral camera, high spectral frequency
component is hard to be recovered with quite limited number (3) of spectral sampling. To
reduce the loss of high frequency information, customized multispectral filtering methods are
proposed. Spectral filters optimized either in the primal domain [29–31] or in the frequency
domain [32,33] could help to realize efficient encoding of spectral information. However, these
methods require customized spectral filter fabrication which are not easy to access. Liquid
crystal tunable filter (LCTF) are widely utilized in hyperspectral imaging [34–36] due to their
portability, fast tunability, convenient controllabillity, etc. Conventionally, the scene is spectrally
scanned by tuning the center transmission wavelength of LCTF and the time resolution is limited
for LCTF based multispectral imaging method. Mian [38] et al. take the first step to explore
multispectral video restoration with undersampled spectral video information taken by LCTF (5
spectral wavelength images at each time, 10nm differences among different time). Sparse priors
in the space, time and spectral domain are well exploited through optical flow and sparse coding,
and promising restoration results are demonstrated. However, taking 5 spectral information in
each instant is not physically implementable. Beyond that, combining CASSI with LCTF based
spectral imaging method are introduced to enhance the spatial and spectral resolution [36], while
the time resolution is still limited.
In this paper, we propose a compact LCTF-based method for taking multispectral videos

through fully utilizing the temporal redundancy of natural dynamic scenes. As shown in Fig. 1(a),
the proposed acquisition system is composed of a monochromatic camera and a synchronized
Liquid Crystal Tunable Filter (LCTF). The transmission wavelength of the LCTF changes frame
by frame through synchronization. As shown in Fig. 1(b), the acquisition system captures the
moving object, each time with a different spectral channel. Combined with the proposed COF
method and bilateral propagation, multispectral videos at the full spatial resolution and same
frame rate of the monochromatic camera can be reconstructed. Our method is based on such
an assumption that in a natural video, the object or background appears for at least a period of
time and moves continuously during that time. In other words, the scene points in a natural
video neither suddenly appear and then disappear in a very short time nor discontinuously move
from one location to another non-neighboring area. Under this basic assumption, we propose
to use the spectral-sweep camera system (Fig. 1(a)) to capture multispectral videos and then
computationally reconstruct the full spatial sensor resolution multispectral channels of all frames
by the aid of optical flow maps.

The temporary consistency has already been successfully applied for image-sequences/videos
denoising [39], super-resolution [40], deblurring [41], etc. However, the main challenge of this
strategy for our application is how to compute optical flow between different spectral channels.
Considering the conventional optical flow [42,43], which follows the brightness constancy
assumption, the input frames are captured with the same spectral response characteristics, and
thus the corresponding points in adjacent frames are of the same intensity. This property leads
to the fidelity constraint, which is the most important term for the conventional optical flow
algorithms. To deal with the illumination variation among frames, the illumination-changing
optical flow methods are further proposed based on the assumption of the spatial or temporal
smoothness prior and managed to recover high accuracy optical flow [44–47]. These methods
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Fig. 1. The overview of the proposed multispectral imaging method. (a) By sweeping
the passing band of the Liquid Crystal Tunable Filter (LCTF) frame by frame, the light
emitted from a certain moving point pass through the LCTF with different wavelengths and
project onto the sensor at different locations. (b) By introducing the COF map and bilateral
propagation algorithm, different spectral projections of the same point are aligned and the
entire spectrum is reconstructed.

take the illumination variations into consideration when estimating the optical flow, while in
the proposed spectral-sweep imaging method, the captured multispectral videos are made up of
frames with different wavelengths, not only the illumination but also the spectral reflectance of
the captured video frames are changing over time. Since the spectral reflectance depends on the
distribution of the surface materials of the scene, which is diverse and locally inconsistent in
space, the observed intensity changes are no longer smooth in space and existing optical flow
methods [42–47] can not be applied in our problem.

In our method, we model the transformations between adjacent spectral-sweep frames with the
complex optical flow (COF), which could model the intensity variation and spatial displacement
together. The amplitude of COF models the intensity variation, including both illumination and
reflectance changes, and the imagery part models the spatial displacement. Since the reflectance
change depends mainly on the surface material composition, leading to the piece-wise smooth
patterns [48,49]. In this paper, we enforce the L1-sparsity of the derivative of the COF to
handle the piece-wise reflectance change. Through optimizing the intensity variation and spatial
displacement simultaneously in the complex form, we demonstrate that our method could handle
the spectral-sweeping videos accurately. With the estimated COF, the multispectral video is
reconstructed from the spectral-sweep video by bilateral propagating.

In conclusion, we propose a novel spatial-temporal sampling framework for takingmultispectral
video. Through co-designing of spectral-sweep acquisition system and COF-based propagation
algorithm, our method achieves comparable reconstruction performance compared with state-of-
the-art methods.

2. Complex optical flow model

Optical flow is widely used to describe the apparent motion between two adjacent video frames.
Based on optical flow maps, the corresponding points in adjacent frames are connected, and
the temporal correlation between video frames can be accurately explored. However, almost all
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the existing optical flow algorithms are highly dependent on the intensity fidelity term, which
constrains that the corresponding points in adjacent frames maintain the same intensity value,

It+1(x, y) = It(x + δx, y + δy), (1)

where x, y are the horizontal and vertical coordinates of current frame, δx and δy are the spatial
displacements in x and y directions between the adjacent frames, It and It+1 denote the image in
frame t and frame t + 1 respectively.
In our application, the adjacent frames of the video captured by our spectral-sweep camera

system is of different spectral channel, thus the corresponding points have different intensities. In
order to model the intensity variances between adjacent spectral-sweep frames, an additional
parameter besides spatial displacement should be introduced. Considering the most common case
where the scene is illuminated by a single light source, according to the intrinsic decomposition
model [48], the observed images so can be decomposed into the light source component, intrinsic
reflectance component and shading component,

so(x, y, λ) = sl(x, y, λ) · sr(x, y, λ) · rshading(x, y), (2)

where x, y are the spatial coordinates, λ denotes the spectral wavelength, so denotes the observed
spectral images, sl is the spectrum of light source, sr is the spectral reflectance of the surface, and
rshading represents the shading effects caused by 3D structure of the surface. The illumination-
changing optical flow [44–47] takes the variation of light source component sl into consideration,
while our paper deals with both the global brightness changing of sl and the locally reflectance
changing of sr together. Specifically, as for the illumination varying cases, the light source
influence sl are usually consistent in local areas and varying smoothly. In contrast, as for the
reflectance variation caused by spectral sweeping, the spectral reflectance sr relies on the surface
materials and thus can be very inconsistent in a local area, i.e., the reflectance of a region with
various materials can change very differently. Besides, the light sources in practice usually vary
very slowly, but the spectral-sweeping caused brightness changing can be very intense.

Accordingly to the characteristics of the illumination-changed cases above, i.e., the spatially
local consistence and temporal smooth variation, the smoothness regularization in both spatial
and temporal domain can be applied for solving the problem [44–47]. Differently, in the proposed
spectral-sweeping based method, different spectral channels are captured along time, not only the
illumination sl but also the spectral reflectance sr of the captured video frames are changing over
time. The cross-channel intensity transfer can be model by

rλ1→λ2 (x, y) =
so(x, y, λ1)
so(x, y, λ2)

=
sl(x, y, λ1) · sr(x, y, λ1) · rshading(x, y)
sl(x, y, λ2) · sr(x, y, λ2) · rshading(x, y)

=
sl(x, y, λ1) · sr(x, y, λ1)
sl(x, y, λ2) · sr(x, y, λ2)

.

(3)

It is obvious that the ratio between different spectral channels can counteract the shading effect
and thus the intensity transfer between different spectral channels can be modeled with the
multiplicative model. Figure 2 shows an example of the multiplicative transfer maps between
spectral wavelength 630nm and 650nm.

After introducing the multiplicative ratio, our cross-channel transfer model for spectral-sweep
videos contains two additive offsets for location transfer and one multiplicative ratio for intensity
transfer. To deal with these offsets and ratio in a unified model, we propose the Complex
Optical Flow model, which is defined in 3D spherical coordinate system (i.e., includes both 1D
intensity and 2D location transfer information). Specifically, the 3D spherical coordinate system
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Fig. 2. Multiplicative intensity transfer map. (a) The synthesized RGB image from
the captured multispectral images and (b) the multiplicative transfer map between spectral
wavelengths 630nm and 650nm.

(composed of a radius and two angle elements) is used to denote each pixel element in the COF
map

Fs1→s2
t→t+1(x, y) = F(x, y)eδxi+δyj, (4)

where Fs1→s2
t→t+1 denotes the COF map from time t to t+ 1, the corresponding swept spectral channel

are s1 and s2 respectively. The radius of the spherical vector, i.e., F(x, y), denotes the intensity
transfer ratio from the spectral channel s1 to s2, the angles δx and δy are used to describe the
locational displacements in x and y directions of the image plane, i and j are the unit angle vectors
of the spherical coordinate system respectively. Each pixel in frame t, t + 1 can be represented by
Is1
t (x, y)exi+yj, Is2

t+1(x, y)e
xi+yj and the transformation between the adjacent frames can be modeled

by complex multiplication

Is2
t+1(x, y)e

xi+yj = Is1
t (x, y)e

xi+yj · Fs1→s2
t→t+1(x, y)

= Is1
t (x, y)F(x, y)e(x+δx)i+(y+δy)j,

(5)

which can be represented briefly as

Is2
t+1 = Is2

t+1F
s1→s2
t→t+1. (6)

The COF maps are defined between the adjacent frame pairs with different spectral channels,
which can be applied for our captured spectral-sweep videos. Since the reflectance change
depends mainly on the surface material composition of the scene, leading to the piece-wise
smooth patterns [48,49]. In this paper, we enforce the L1-sparsity of the derivative of the complex
optical flow (COF) to handle this piece-wise smooth reflectance changes. Through optimizing the
intensity variation and spatial displacement simultaneously in the complex form, we demonstrate
that our method could handle the spectral-sweeping videos accurately.

In the following, we propose a complex L1-norm constrained optimization algorithm to estimate
the COF maps among the captured spectral-sweep frames.

3. COF estimation algorithm

Based on the definition of COF maps, the fidelity term of the objective function for estimating a
COF map is

Ef = | |Is1
t F

s1→s2
t→t+1 − I

s2
t+1 | |

2
2 . (7)

The problem is still ill-posed by minimizing the fidelity term only. To deal with this ill-posedness,
we introduce the complex L1-norm regularization on the derivative of the COF map,

Ec = | |∇Fs1→s2
t→t+1 | |1, (8)
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where ∇ is the complex gradient operation on COF maps. Since the COF map here is a complex
vector field, the complex gradient is defined as the derivative of adjacent elements in complex
vector field along the x− and y− directions,

∇xF = lim
∆x→0

F(x + ∆x, y) − F(x, y)

∇yF = lim
∆y→0

F(x, y + ∆y) − F(x, y),
(9)

where the subtractions in Eq. (9) are spherical vector operations. The complex L1-norm in Eq.
(8) denotes the summation of modules of complex gradient vectors.

The complete objective function is a weighted combination of Eq. (7) and Eq. (8),

E = Ef + λcEc, (10)

where λc is the weight of the complex L1-norm constraint, and in this paper, λc is set to 0.02
empirically.
To solve Eq. (10), the Iterative Reweighted Least Squares (IRLS) method [50] is applied.

The basic idea of IRLS is approximating the complex L1-norm by using weighted L2-norm
iteratively to make the algorithm converge step by step. Specifically, during the k-th iteration, the
non-quadratic term Ec in Eq. (8) is approximated by,

Ek
c = |∇F

s1→s2
t→t+1

(k−1)
|−1 |∇Fs1→s2

t→t+1 |
2, (11)

where ∇Fs1→s2
t→t+1

(k−1) is the complex gradient of the k − 1 th iteration. By replacing Ec with the
reweighted quadratic term Ek

c in Eq. (10), the updated objective function becomes a quadratic
function and thus can be easily solved by the gradient descent-based methods. In this paper, we
adopt the Conjugate Gradient (CG) algorithm.
During the implementation, a coarse-to-fine framework, which is widely used in optical

flow estimation algorithms [51], is adopted to prevent the algorithm from trapping to local
minima. In practice, the algorithm starts from a very coarse level (1/256 of the size of input
framesets/videos), and at each level, the COF maps are computed by iteratively computing the
outer loops (reweighted iteration with k increasing) and inner loops (CG iteration for minimizing
the objective function with fixed weights) until the algorithm converges. After the algorithm
converges at each level, the initial COF maps of next level are computed by bilinear-upsampling
the current level COF maps. In the very beginning, the first level COF maps are initialized by a
constant 1e0i+0j, and the scaling factor between adjacent levels is set to be 1.2.

Through reconstructing the forward and backward COF maps among adjacent sweep-spectral
frames, multispectral videos can be recovered by bilaterally propagating the captured spectral
channel from the current frame to the other frames with the optical flow part of COF maps, i.e.
the 2D location tranfer part, as shown in Fig. 3. In a cycle of the spectral-sweep frame set, i.e. the
frames sweeping from the first channel (with the shortest wavelength) to the final one (with the
longest wavelength), each frame contains one real captured spectral channel, which is propagated
in both forward and backward frames according to the COF maps. By assigning the missing
points by its corresponding point in the nearest real captured channel according to the COF maps,
the information of the real captured spectral channels are propagated to the rest frames to fill the
missing channels and the entire multispectral video can be reconstructed.
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Fig. 3. The diagram of bilateral propagation for reconstructing multispectral videos.
The input images (i.e. diagonal frames marked with colored boxes) are captured by the
LCTF-based spectral-sweep acquisition system. Each N frames (N is the number of
sweeping channels of the input spectral-sweep video) from the first channel (with the shortest
wavelength) to the last one (with the longest wavelength) are processed as a period unit
to reconstruct the corresponding multispectral video. The channels on both sides of input
spectral-sweep frames (the diagonal frames) are missing and need to be reconstructed by
bilateral propagation. The arrows denotes the propagation directions.

4. Experiment

4.1. System and calibration

To eliminate the differences of sensitivities on different spectral channels, which is caused by the
varying LCTF transmittances and sensor response efficiencies at different wavelengths, we use
the color checker (Fig. 4(a)) as a reference board, and correct the output responses by using the
first-order fitting for each channel individually. We can see that after the calibration, the output
spectral curves of all the color areas match well with respect to the ground truth ones (Fig. 4(b)).

4.2. COF demonstration

To verify the proposed COF estimation algorithm, we first tested it on a binocular image pair.
The original images are provided by Liu et al. [52], and different channels of the images, i.e.
the red channel of left view and the green channel of right view, are used as inputs, as shown in
Fig. 5. The naive optical flow (NOF) map derived by the human assisted method [52], which
can be regarded as the ground truth, is shown in the right of the top row of Fig. 5 as a reference.
The first two images of the middle row are results of the NOF algorithm [51] on full-channel
input and the synthetic spectral-sweep images (i.e., the red channel of left view and the green
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Fig. 4. The calibration of sensor andLCTF spectral response responses. (a) The pattern
of X-rite ColorChecker we used for calibration. (b) Spectral curves of the corresponding
color areas before calibration, after calibration and ground truth.

channel of right view) respectively. It is obvious that although the NOF algorithm [51] works
well on full-channel images (shown in the left of middle row), the spectral-sweep inputs bring
great challenges and fail the algorithm (shown in the middle of middle row). In contrast, the
proposed COF algorithm gives promising result on the spectral-sweep images (shown in the
right of the middle row). In the last row, the ground truth of left view and the reconstructed
counterpart warped from the right view by using our COF are shown. The error map between
ground truth and warping image is also given. We can see that the COF algorithm achieves high
accuracy reconstruction on this qualitative comparison.
To further quantitatively verify the accuracy of proposed method, we test the proposed COF

algorithm on real captured dynamic images with 17 spectral channels (from 540 nm to 700
nm with 10 nm spectral resolution). Since we cannot directly capture the multispectral images
simultaneously at each time instant for dynamic scene with LCTF, we simulate the dynamic
scene through keeping the scene static and moving the camera step by step. Each camera step
corresponds to a time frame, and for each camera movement step, we capture all spectral channels,
i.e. 17 images, as the ground truth. Only one channel of each frame is used for producing the
captured spectral-sweep video. We compare the PSNR of the NOF, the proposed COF method in
retrieving the high-fidelity optical flow cross spectral channels. As shown in Fig. 6, in average,
the COF method could retrieve about 5dB PSNR and 0.35 SSIM improvement compared with
the NOF method.

4.3. Multispectral reconstruction

To verify the accuracy of proposed method, we reconstruct the multispectral video on the
synthesized sweep-spectral frames extracted from the ground truth multispectral data (Sec. 4.2).
Several input single-channel frames and reconstructed channels of the corresponding frames are
shown in Fig. 7, the video (Visualization 1) is provided as a supplementary material. We can see
that the reconstructed images are of excellent visual quality except for some holes in marginal
regions, which is because these regions are out of the field-of-views of input frames.
To further demonstrate our method quantitatively, we compare the proposed method with

existing representative single-camera multispectral imaging methods, including Coded Aperture
Snapshot Spectral Imager (CASSI) [14], Prism-Mask Imaging Spectrometer (PMIS) [6], and
the deep-learning based CASSI [11] (deep CASSI). To prevent the influences of system errors
and noises, we test all the spectral imaging techniques by simulating the optical imaging

https://doi.org/10.6084/m9.figshare.8856941
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Fig. 5. The NOF/COF between the red-green images. We extract different color channels
of the binocular images (red channel of left view and green channel of right view) from
original full-channel (RGB channels) images (provided by Liu et al. [52]), and compare
both optical flow maps computed by NOF algorithm [51] and the proposed COF method.
The ground truth and estimated optical flow maps from full-channel images are also given.
The ground truth of left view and its warping version from right view using our COF, as
well as the error map of the warped image are shown in the bottom row.

Fig. 6. Quantitative errors with different frame intervals. The error curves of the
results of NOF algorithm and our COF method with respect to the frame intervals during
propagation.
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Fig. 7. The experimental results on real captured data with ground
truth.(Visualization 1) Top row: selected input images captured at view 1, 6, 11 and
17 of spectral wavelength at 540 nm, 590 nm, 640 nm and 700 nm respectively. Middle 4
rows: selected reconstructed channels.

process and applied the following reconstruction algorithm on the simulated measurements
from the above ground truth multispectral video. Figure 8 presents the qualitative comparisons
between the results of PMIS [6], CASSI [9], Deep CASSI [11], our method and the ground
truth. It is shown that the proposed methods achieves visually better or comparable results than
the state-of-the-arts. As shown, the spatial resolution of single camera based PMIS is quite
limited since it is directly sacrificed for spectral resolution. Conventional CASSI based spectral
reconstruction method retrieves more spatial details than PMIS and Deep CASSI retrieves much
more details than conventional CASSI through introducing the deep-learned spatial-spectral
prior. Our method could retrieve spatial details comparable to Deep CASSI. Through further
inspecting the background streaks of Deep CASSI, our method and ground truth (last two rows
in Fig. 8), the results of Deep CASSI contains streaks background in 610nm and 660nm, which
actually do not exist in the ground truth. Our method could handles this spectral difference and
the reconstructed spectral images is consistent with the ground truth.
The quantitative comparison in Figs. 9(a) and 9(b) further verify the promising performance

of our method. Note that the mean PSNR shown in Fig. 9(a) is the average PSNR of all
the reconstructed spectral channels of each frame. That is because each frame has one real
captured channel and 16 reconstructed channels, and without considering the effects of noises and

https://doi.org/10.6084/m9.figshare.8856941
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Fig. 8. Qualitative comparisons with state-of-the-art spectral video acquisition meth-
ods on reall captured data with ground truth. Row 1∼4: selected channls at different
views. Bottom row: close-ups of the boxed regions.

quantization errors, the PSNR of the real captured channel is infinite. To prevent the influence of
these infinite values, we just calculate the mean PSNR of reconstructed channels here. Therefore,
the real performance of our method should be better than the mean PSNR shown in Fig. 9(a).

Fig. 9. Quantitative comparisons with state-of-the-art spectral video acquisitionmeth-
ods on real captured data with ground truth. (a) Mean PSNR of all the reconstructed
channels. (b) Mean SSIM of all the channels.
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We also apply the proposed system on the moving scenes. As shown in Fig. 10, the dynamic
scene with moving objects, i.e. the hand and the toy vehicle, is captured by our LCTF-based
spectral-sweep camera system, and several frames of the reconstructed multispectral video
(Visualization 2) with 17 channels (from 540 nm to 700 nm with 10 nm spectral resolution) are
shown in Fig. 10. To demonstrate the details well, the close-ups (the corresponding regions
are marked by rectangles in the full images) are given in the bottom row. All the close-ups are
sampled from the same location, and thus the movement of hand is easy to tell from the zoom-in

Fig. 10. The experiment results on real captured dynamic scene (Visualization 2). Top
row: selected input frames captured at time 1, 6, 11 and 17 with spectral wavelength 540 nm,
590 nm, 640 nm and 700 nm respectively. Middle 4 rows: selected reconstructed channels.
Bottom: the details of reconstructed results.

https://doi.org/10.6084/m9.figshare.8798756
https://doi.org/10.6084/m9.figshare.8798756
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patches. In Fig. 10, we can see that the proposed system works well on the real dynamic scenes.
The moving objects are reconstructed with promising quality, and even the shadows of the moving
hand are well reconstructed. However, although it is not very obvious, there indeed exist some
artifacts in the occlusion regions of the background (occluded by the hand) of some channels.
That is because the regions of these channels are occluded on the corresponding real captured
single channel frames. For example, the 17th channel (700nm) of Frame 1 are propagated from
the real captured channel (700nm) of Frame 17, and the regions with artifacts in 17th channel of
Frame 1 are occluded in Frame 17, so the algorithm has to use the adjacent non-occluded pixels
to fill the holes in Frame 1, as shown in the insets of Fig. 10.

5. Conclusion and discussion

In summary, the proposed system can capture and reconstruct the dynamic multispectral
framesets/videos by using the LCTF-based spectral-sweep camera system. The proposed
approach is validated by a series of experiments on both synthetic and real captured data. Yet, the
current system still has some limitations: (a) The COF may fail in the occluded regions, which
may lead to the failure reconstruction. (b) The transmittance of LCTF at some channels (main in
the blue band) is very low, so that the system have a bad signal to noise ratio for these channels.

In the future, the adaptive exposure strategy can be used to compensate the low transmittance of
the LCTF on the blue band. Besides, the lost information caused by occlusions can be completed
by using the similar patches in both the intra and inter frames, i.e. the non-local similarity priors.
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